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Water waves (Pic from D. Henderson and etc. )

I Unknowns: velocities (u, v ,w)(x , y , z, t),
I surface η(x , y , t) (with 0 being the still water position),
I domain Ω(t) = (0,L)× (0,H)× (h̃, η(x , y , t)),
I bottom topography h̃(x , y , t), surface pressure P(x , y , t).
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A Boussinesq system for 3D waves (Bona, C., Saut
(2002)

A Boussinesq system with moving bottom topography h̃(x , y , t)
and the surface pressure P(x , y , t),

ηt +∇ · v +∇ · (h + η)v − 1
6

∆ηt = F (hxxt ,hxtt ,∇P),

v t +∇η +
1
2
∇|v |2 − 1

6
∆v t = G(hxxt ,hxtt ,∇P),

(BBM2)

where h = h̃+h0
h0

(flat means h=0) with h0 = average water
depth.

I The fluid is bounded by the bottom topography h̃(x , y , t)
and the free surface η(x , y , t),

I η(x , y , t) is a fundamental unknown of the problem,
I v(x , y , t) denotes the horizontal velocity at height

√
2
3h0.

There are investigations on other Boussinesq systems, such as
systems with KdV terms.
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Justification (Bona, Colin, Lannes 2005)

I It is a first order approximation to Euler equations .
Meaning: for any initial value (η0,u0) ∈ Hσ(R)2 with
σ ≥ s ≥ 0 large enough, there exists a unique solution
(ηeuler ,ueuler ) of Euler equations, such that

‖u−ueuler‖L∞(0,t ;Hs)+‖η−ηeuler‖L∞(0,t ;Hs) = O(ε21t , ε22t , ε1ε2t)

for 0 ≤ t ≤ O(ε−1
1 , ε−1

2 ).
I Other relevant works (Craig 1985,Schneider and Wayne

2000, Bona, Prichard, Scott 1981, Alazman, Albert, Bona,
Chen, Wu (2003)...

I More justification needed, especially by comparing with
data from the field and laboratory experiments.
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Advantages of Boussinesq system

From practical side: it is
I Physically relevant, especially with BVP;
I Easy to analyze, to simulate, and to incorporate into a

complex system when compared with Euler equation or
Navier Stokes or ...,

I More accurate when compared with the Linear equation
(lol).

I It has many desired and helpful properties, such as the
existence of solitary waves, conservation of mass, · · · .

Example, taking h = P = 0 and considering one-space
dimension yields.

ηt + ux + (ηu)x −
1
6
ηxxt = 0,

ut + ηx + uux −
1
6

uxxt = 0.
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Properties of the system (Bona, C., Saut (2002))

I (Bona, C., Saut 2003) The linearized system is globally
well posed in Lp and in W k

p for 1 ≤ p ≤ ∞ and
k = 0,1,2, · · · .

I It has the invariant functionals

H(η,u) =
1
2

∫ ∞
−∞

u2(1 + η) + η2dx ,

I(η,u) =

∫ ∞
−∞

uη +
1
6
ηxuxdx ,

Iu =

∫ ∞
−∞

u dx and Iη =

∫ ∞
−∞

η dx .

I there is a Hamiltonian structure based on H and I, namely

∂t∇(η,u)I(η,u) + ∂x∇(η,u)H(η,u) = 0.
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Wellposedness of the Boussinesq system

I These invariants are useful, but none of these invariants
are composed only of positive terms, so they do not on
their own provide the a priori information one needs to
conclude global existence of solutions of initial-value
problems, except when 1 + η ≥ α > 0.

I Global well-posedness in time for the nonlinear problem is
proved in [BCS] and [AABCW] under the condition that if
there is an α > 0 such that the solution satisfies

1 + η(x , t) ≥ α for all t ≥ 0.

Note: Not a perfect result because it is based on an
assumption about the solution η which is not known. In
physical terms, the condition simply means that the bed
does not run dry at any time, or what is the same, the free
surface never touches the bottom.

I For some initial data, solution exists for all time. Examples,
the exact nontrivial solution. For others?

I (Bona, C., Saut 2003) The linearized system is globally
well posed in Lp and in W k

p for 1 ≤ p ≤ ∞ and
k = 0,1,2, · · · .
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Numerical study on global existence (Bona and
C(2016))

We tested initial data of the form

η(x ,0) = a e−x2
, u(x ,0) = b xe−x2
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Solution blows up with (a,b) at "x" and stays bounded at "o"

Figure: Blowup map for values of the parameters a and b. x blows up
and the circles are values where the solution appears global.
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Conjectures on global solutions in time

I a close to 0, small amplitude; a > −1, no dry up ;
I When a and b are small (and a > −1), namely in the

physically relevant modeling range, it seems the global
solution exists;

I η(x ,0) + 1 ≥ α > 0 does not guarantee η(x , t) + 1 positive
for all t ;

I theoretical proof OPEN
I it seems to have a local similarity structure near the blowup

point. Theoretical proof is also open
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Head-on collision of solitary waves

I the solitary waves are generated numerically;
I there is a small phase shift after the collision;
I the amplitude at the middle of the interaction is larger than

the combination of two incoming waves.
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The 2-D Wave tank at PSU (Henderson and
Hammack)

The Boussinesq system has these double periodic solutions.
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Wave patterns: linear plane waves

I the 2D patterns are the oblique interaction of two plane
waves;

I parameters involved in describing a plane wave:
I traveling direction: c = c0(1,0), so the direction is in the

y -direction;
I the angle of the plane wave and the wave length of the

plane wave k1 = l1(1, τ1);
I to search for this plane wave means to find solutions in the

form of

η(x) = ηk1eik1·(x−ct), v(x) = vk1eik1·(x−ct);

I substitute this ansatz into the linear part of the equations

ηt +∇ · v +∇ · ηv − 1
6

∆ηt = 0,

v t +∇η +
1
2
∇|v |2 − 1

6
∆v t = 0,

(BBM2)
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Wave patterns: linear plane waves

I k1, c, ηk1 and vk1 satisfy

−(1 +
1
6
|k|2)(c · k)ηk + k · vk =0,

kηk − (1 +
1
6
|k|2)(c · k)vk =0.

I For the nontrivial ((ηk,vk) 6= 0) solutions (plane waves) to
exist, k1 and c are such that the determinant is zero, i.e.
satisfy dispersion relation

∆(k,c) = (1 +
1
6
|k|2)2(c · k)2 − |k|2 = 0. (Det)

I Similarly, for the other plane wave,

η(x) = ηk2eik2·(x−ct), v(x) = vk2eik2·(x−ct),

where k2 = l2(1,−τ2), k2 and c have to satisfy (Det).
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Sketch of the linear study on wave patterns

Assume k1 and k2 are the solutions to (Det), then we have
wave patterns with parameters consist of 5 parameters c0, l1,
l2, τ1 and τ2

I 3 parameter families of patterns because (Det) has to be
satisfied by (k1,c) and (k2,c), and

I amplitude ηk1 , ηk2 , vk2 , vk1 ;
I symmetric lattice: τ1 = τ2, l1 = l2;
I symmetric pattern: symmetric lattice plus

ηk1 = ηk2 , vk2 = vk1 .

For symmetric patterns, two parameters for the lattice and half
of the number of parameters for the amplitudes.
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Results of the nonlinear study on wave patterns (C.
and Iooss (2006))

Idea:
I add the nonlinear term in, using a perturbation approach

(Lyapunov Schmidt);
I invert the linear operator around the kernel and find the

bound for the pseudo-inverse;
I perturbation parameter: w in c = c0(1,w) and amplitudes

of the plane waves;
Results:

I existence of symmetric patterns with almost all
parameters;

I existence of asymmetric patterns with symmetric lattice
with almost all parameters;

I existence of asymmetric patterns with asymmetric lattice
for a large set of parameters (small devisor problem
occurs).
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Theorem on symmetric wave patterns.

For symmetric lattice (2 parameters) with symmetric pattern,
we have

Theorem
(Chen and Iooss 2006) For almost every (k , τ), k represents
the wave number in y direction and τ represents the ratio
between the periods in y and x directions, One example of the
form of the free surface, even in y , is given by

η = ε cos ky cos kτx − ε2

2(1 + τ2)
{1− τ2

4
cos 2kτx

+ c1 cos 2ky + d1 cos 2ky cos 2kτx}+ O(ε3).
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Wave patterns with change of water depth (moving
down)

From left to right with h0 = 0.5,1,8, it is observed that the wave
patterns are changing from “hexagonal” shape to “rectangular”
shape.
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Standing wave patterns (C., Iooss and C. Shenghao Li
(2017)

With similar techenique, we can prove the
I existence of standing waves in one space dimension (C.

and Iooss (2005)) and
I standing wave patterns in two space dimension (C. and

Shenghao Li (2017)).
I A movie on standing wave patterns. Chrome and open file

wave2.gif, bookmarked It is also available at
https://www.youtube.com/watch?v=7n3y55yIzxk
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Numerical and experimental

Numerical solution with nonzero boundary data at y = 0 only.
Zero initial data.
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Numerical and experimental
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Wave profile started from a rectangular source

Surface profile at t=0 and t=60 (η(x , y ,0) and η(x , y ,60)) with
aspect ratio σ = 10.
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Boussinesq system with local dissipation and decay
rate (C. and Goubet (2009)

ηt + ux + (uη)x − ηxxt = ηxx ,

ut + ηx + uux +−uxxt = uxx .

Theorem
For initial data in (H1(R) ∩ L1(R))2 and small enough in L1 ∩ L2,
as t →∞,

‖η(t)‖2L2
x

+ ‖u(t)‖2L2
x
≤ O(t−1/2);

‖(η,u)‖L∞
x
≤ O(t−1/2).
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Single equation with white noise dispersion (C.,
Goubet and Mammeri (2016))

du − duxx + ux ◦ dW + upuxdt = 0,

in the Stratonovich formulation
I W (t) is a standard real valued Brownian motion;
I the corresponding deterministic case:

ut − utxx + ux + upux = 0,
I assume p > 8 and the initial data is small in L1

x ∩ H4
x ;

I the solutions decays to zero at O(t−
1
6 ), instead of O(t−

1
3 )

as in deterministic case;
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Other works, not a complete list at all

I Existence of solitary and multi-pulsed solutions (C. 2000))
and stabilities (Bona and C(1998));

I Existence of solitary wave solutions (C., Nguyen and Sun
(2011));

I Existence of cnoidal wave solutions (Chen, C,
Nguyen(2007)), explicit and topological index theory;

I Stability of solitary waves of elevation and depresion,
stability of cnoidal waves (CCDLN (2010))

I Existence of solitary wave and their stability (C. Nguyen
and Sun), for systems with large surface tension;

I non-even bottom topography, surface pressure change in
(x , t) (C. );

I surface tension effects ();
I viscosity, add hoc local operator, nonlocal operators (C.,

Dumont, Goubet 2012) wellposedness and decay rate;
I model with stochastic dispersion (C., Goubet, Mammeri

2016) wellposedness and decay rate for equation
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URL and Thank you!

References for the talk are available at

http://www.math.purdue.edu/˜chen/pub.html

Thank you for your attention!
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